Dirichlet Mixtures, the Dirichlet Process, and the Structure of Protein Space
نویسندگان
چکیده
منابع مشابه
Dirichlet Mixtures, the Dirichlet Process, and the Structure of Protein Space
The Dirichlet process is used to model probability distributions that are mixtures of an unknown number of components. Amino acid frequencies at homologous positions within related proteins have been fruitfully modeled by Dirichlet mixtures, and we use the Dirichlet process to derive such mixtures with an unbounded number of components. This application of the method requires several technical ...
متن کاملHilbert Space Embedding for Dirichlet Process Mixtures
This paper proposes a Hilbert space embedding for Dirichlet Process mixture models via a stick-breaking construction of Sethuraman [6]. Although Bayesian nonparametrics offers a powerful approach to construct a prior that avoids the need to specify the model size/complexity explicitly, an exact inference is often intractable. On the other hand, frequentist approaches such as kernel machines, wh...
متن کاملAccelerated Variational Dirichlet Process Mixtures
Dirichlet Process (DP) mixture models are promising candidates for clustering applications where the number of clusters is unknown a priori. Due to computational considerations these models are unfortunately unsuitable for large scale data-mining applications. We propose a class of deterministic accelerated DP mixture models that can routinely handle millions of data-cases. The speedup is achie...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولDirichlet Process Mixtures of Generalized Linear Models
We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new class of methods for nonparametric regression. Given a data set of input-response pairs, the DP-GLM produces a global model of the joint distribution through a mixture of local generalized linear models. DP-GLMs allow both continuous and categorical inputs, and can model the same class of responses that can be mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Biology
سال: 2013
ISSN: 1066-5277,1557-8666
DOI: 10.1089/cmb.2012.0244